MicroRNA-133b negatively regulates the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells

نویسندگان

  • Wende Xiao
  • Shifeng Wen
  • Haoyi Chen
  • Weipeng Zheng
چکیده

Osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs) is accurately regulated by essential transcription factors and signaling cascades. However, the precise mechanisms involved in this process remain unknown. MicroRNAs (miRNAs) regulate various biological processes by binding target mRNA to attenuate protein synthesis. The purpose of this study was to investigate the role of miR-133b in regulation of BMMSC proliferation and osteogenic differentiation. Quantitative real time PCR was performed to investigate the expression pattern of miR-133b during osteogenic differentiation of MSCs at different time points. Then the effects of miR133b downreguation/upregulation on proliferation and osteogenic differentiation were evaluated by MTT, expression levels of osteogenic differentiation markers and Alizarin red S staining. The expression level of miR-133b was downregulated during osteogenic differentiation of BMMSCs (P<0.01). miR-133b-specific siRNA promoted proliferation and osteogenic differentiation of BMMSCs, with increased mRNA expression of the osteogenic markers alkaline phosphatase (ALP), runt-related transcription factor (RUNX2), osteocalcin (OCN) and bone morphogenetic protein 2 (BMP-2) as well as stronger intensity of Alizarin red S staining (P<0.05, P<0.01). Opposite findings were observed when miR-133b was overexpressed. In conclusion, miR-133b plays a important role in regulating the proliferation and osteogenic differentiation of BMMSCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells

Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...

متن کامل

Effect of Lithium Chloride on Proliferation and Bone Differentiation of Rat Marrow-Derived Mesenchymal Stem Cells in Culture

Objective(s) It is believed that the mesenchymal stem cell (MSC) differentiation and proliferation are the results of activation of wnt signaling pathway. On the other hand, lithium chloride is reported to be able to activate this pathway. The objective of this study was to investigate the effect of lithium on in vitro proliferation and bone differentiation of marrow-derived MSC. Materials and ...

متن کامل

Naringin enhances osteogenic differentiation through the activation of ERK signaling in human bone marrow mesenchymal stem cells

Objective(s): Naringin has been reported to regulate bone metabolism. However, its effect on osteogenesis remains unclear. The aim was to investigate the effect of naringin on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) through the activation of the ERK signaling pathway in osteogenic differentiation. Materials and Methods: Annexin V-FITC assay and MTT assay ...

متن کامل

Osteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin As a Differentiation Factor

Background: Adipose-derived stem cells (ADSC) could be an appealing alternative to bone marrow stem cells (BMSC) for engineering cell-based osteoinductive grafts. Meanwhile, prior studies have demonstrated that melatonin can stimulate osteogenic differentiation. Therefore, we assayed and compared the melatonin effect on osteogenic differentiation of BMSC with that of ADSC. Methods: Mesenchymal...

متن کامل

The osteogenic differentiation stimulating activity of Sea cucumber methanolic crude extraction on rat bone marrow mesenchymal stem cells

Objective(s):Sea cucumber derived bioactive compound is considered efficient in treatment of bone disorders. This study was performed   to evaluate the effect of this extract on differentiation of rat bone marrow mesenchymal stem cells (rBMMSc) into osteogenic lineage. Materials and Methods: Isolated rBMMSc were grown in DMEM supplemented with 10% FBS. The cells were exposed to different concen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016